PipingNotes

Design-Engineering-Construction-Testing & Commissioning of piping

Stress Analysis Calculations for Pipelines

How to Perform Stress Analysis Calculations for Pipelines

Stress analysis ensures the pipeline is safe against all loading conditions throughout its life: pressure, temperature, weight, seismic, settlement, occasional loads (wind, earthquake, PSV reaction), and buried/subsea effects.

1. When Is Stress Analysis Required?

CaseMandatory?Code/Reference
ASME B31.3 (Process Piping)Yes if high T or large ΔTB31.3 §301.4
ASME B31.4 (Liquid Pipelines)Yes for all above-ground & critical buriedB31.4 §401.5
ASME B31.8 (Gas Pipelines)Yes for compressor stations, above-ground spansB31.8 §833
ASME B31.8S + API 579Flexibility + Fitness-for-Service
DNV-OS-F101 / ISO 13628Subsea pipelines & risers
Buried pipelines > DN400 or ΔT > 50°CUsually required (causes longitudinal stress)

2. Types of Stress Analysis

TypeWhat It ChecksCode Limits
Flexibility AnalysisSustained + Expansion (thermal, settlement)B31.3, B31.4, B31.8
Occasional AnalysisSustained + Wind/Earthquake/PSV< 1.33 × Sh or 1.5 × Sh
Fatigue AnalysisCyclic thermal or pressure (especially risers)SN curves (DNV, API)
Buckling / CollapseBuried (traffic) or subsea (external pressure)DNV-OS-F101, API 1111
Fracture MechanicsCrack-like defectsBS 7910, API 579

3. Step-by-Step Calculation Procedure (ASME B31.3 Example)

Step 1 – Define Load Cases (B31.3 Table 320.1)

Load CaseCombinationPurpose
SustainedW + P (internal pressure + weight)Hoop + longitudinal stress
ExpansionT1 – T2 (thermal expansion)Flexibility stress range
OccasionalW + P + Wind or Earthquake or PSVAllowable 1.33 Sh
OperatingW + P + TDisplacement check

Step 2 – Calculate Primary Stresses (Pressure + Weight)

Hoop stress (always checked):
σ_h = P × (D₀ – t) / (2t) ≤ Sh

Longitudinal sustained:
σ_L = P × D / (4t) + M_z / Z (bending from weight) ≤ Sh

Step 3 – Calculate Thermal Expansion Stress Range (Secondary)

Displacement stress range SE:
SE = √[ (ii × Mi)² + (io × Mo)² + 4 × Mt² ] / Z ≤ SA

Where:

  • SA = f (1.25 Sc + 0.25 Sh) (f = cycle factor)
  • ii, io = in-plane & out-plane stress intensification factors (B31.3 Appendix D)

Step 4 – Software Workflow

SoftwareBest ForLicense 2025
CAESAR II (Hexagon)#1 for ASME B31.3, B31.4, B31.8, EN 13480$$$
AutoPIPE (Bentley)Nuclear, buried, seismic, jacketing$$$
ROHR2 (Sigma)Europe (EN 13480), very good buried analysis$$
START-PROFCheapest professional, excellent buried$
PASS/START (NTI)Russian GOST + ASME$
SIMFLEX-IIQuick screeningFree–$

Step 5 – Typical CAESAR II Modeling Steps

  1. Input pipe properties (D, t, material, insulation, fluid)
  2. Define temperature & pressure cases
  3. Add supports/restraints:
  • +Y (vertical support)
  • Anchors, guides, rests, springs, expansion joints
  1. Add occasional loads (wind per ASCE 7-22 or EN 1991, earthquake per IBC/ASCE 7 or EN 1998)
  2. Run static load cases (SUS, EXP, OCC)
  3. Check code compliance report:
  • Sustained ≤ Sh
  • Expansion ≤ SA
  • Occasional ≤ 1.33 Sh
  • Restraint loads
  • Nozzle loads on pumps/compressors (API 610/617 limits)
  • Flange leakage check (ASME VIII Div.1 App.2 or EN 1591)

Step 6 – Buried Pipeline Special Cases (ASME B31.4 / B31.8)

Longitudinal stress from temperature + Poisson:
σ_L = E α ΔT – ν σ_h + bending from soil settlement

Use CAESAR II or START-PROF buried module with:

  • Soil spring stiffness (ALA 2005 or EN 1998-4)
  • Virtual anchor length calculation
  • Maximum span between soil anchors

Step 7 – Quick Hand Calculation Example (Simple Case)

10” Sch40 carbon steel pipeline, 200 m straight run between two anchors, ΔT = 80°C, buried.

  • Material A106 Gr.B → E = 203 GPa, α = 12×10⁻⁶ /°C
  • Hoop stress σ_h = 90 bar × (273-8.18)/(2×8.18) ≈ 115 MPa
  • Fully restrained → σ_L = E α ΔT – ν σ_h
    = 203×10⁹ × 12×10⁻⁶ × 80 – 0.3 × 115×10⁶
    = 194.9 – 34.5 = 160 MPa (compressive)

Allowable compressive stress ≈ 0.9 Fy = 0.9×245 = 220 MPa → OK
But you need expansion loops every ~150–300 m depending on diameter.

4. Rules of Thumb

ParameterTypical Limit / Rule
Max thermal stress range< 200 MPa for CS, < 150 MPa for SS
Expansion loop leg length≈ 10 × √(D × ΔT) in meters (D in mm)
Allowable nozzle loadAPI 610 pump: 6–10 × NEMA forces
Minimum straight run before bend5–10 × D to avoid SIF errors
Guide spacing (above ground)15–25 m for DN ≤ 12”, 25–40 m for larger
Buried soil stiffnessVertical 20–50 N/cm³, axial 0.5–2 N/cm³

5. Deliverables of a Proper Stress Analysis Report

  • Critical line list
  • Isometric markups with support locations
  • CAESAR II input files (.c2)
  • Code compliance tables (sustained, expansion, occasional)
  • Restraint load summary
  • Spring hanger table
  • Flange leakage report
  • Expansion joint or bellows datasheet
  • Recommendations (add loops, change support type, etc.)

If you send me a specific line (diameter, temperature, pressure, routing sketch, support types), I can give you the exact loop size, support spacing, or run a quick CAESAR II calculation and send the results.

Leave a Reply

Your email address will not be published. Required fields are marked *